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Abstract Genomic in situ hybridization (GISH) and
multicolor GISH (mcGISH) methodology were used to
establish the cytogenetic constitution of five partial
amphiploid lines obtained from wheat x Thinopyrum
intermedium hybridizations. Line Zhong 1, 2n=52, con-
tained 14 chromosomes from each of the wheat genomes
plus ten Th. intermedium chromosomes, with one pair of
A-genome chromosomes having a Th. intermedium chro-
mosomal segment translocated to the short arm. Line
Zhong 2, 2n=54, had intact ABD wheat genome
chromosomes plus 12 Th. intermedium chromosomes.
The multicolor GISH results, using different fluorochrome
labeled Th. intermedium and the various diploid wheat
genomic DNAs as probes, indicated that both Zhong 1 and
Zhong 2 contained one pair of Th. intermedium chromo-
somes with a significant homology to the wheat
D genome. High-molecular-weight (HMW) glutenin and
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gliadin analysis revealed that Zhong 1 and Zhong 2 had
identical banding patterns that contained all of the wheat
bands and a specific HMW band from Th. intermedium.
Zhong 1 and Zhong 2 had good HMW subunits for wheat
breeding. Zhong 3 and Zhong 5, both 2n=56, possessed no
gross chromosomal aberrations or translocations that were
detectable at the GISH level. Zhong 4 also had a
chromosome number of 2#=56 and contained the complete
wheat ABD-genome chromosomes plus 14 Th. interme-
dium chromosomes, with one pair of Th. intermedium
chromosomes being markedly smaller. Multicolor GISH
results indicated that Zhong 4 also contained two pairs of
reciprocally translocated chromosomes involving the A
and D genomes. Zhong 3, Zhong 4 and Zhong 5 contained
a specific gliadin band from Th. intermedium. Based on
the above data, it was concluded that inter-genomic
transfer of chromosomal segments and/or sequence intro-
gression had occurred in these newly synthesized partial
amphiploids despite their diploid-like meiotic behavior
and disomic inheritance.

Introduction

The wheatgrass, Thinopyrum intermedium (Host) Bark-
worth and D. R. Dewey (2n=6x=42) [syn.=Agropyron
intermedium (Host) Beauvoir=Elytrigia intermedia (Host)
Nevski], is an important source of genetic variability for
improving cultivated wheat. It has been used extensively
for hybridization with bread wheat and durum wheat, and
numerous useful genes, particularly those for leaf and stem
rust resistance, have been successfully transferred to wheat
(Fedak 1999; Fedak et al. 2000; Fedak and Han 2004).
Many derivatives have been produced from wheat-7h.
intermedium hybrids, such as octoploid amphiploids,
hexaploid amphiploids, partial amphiploids and alien
addition lines (Wienhues 1966; Cauderon et al. 1973;
Chi et al. 1979; Sun 1981; Schulz-Schaeffer and Haller
1988; He et al. 1988; Friebe et al. 1992; Han and Li 1995;
Larkin et al. 1995).



Chi et al. (1979) and Sun (1981) reported the production
of the Zhong series of partial amphiploids from the
hybrids of common wheat x Thinopyrum intermedium;
these were designated as Zhong 1, Zhong 2, Zhong 3,
Zhong 4 and Zhong 5. Following crosses between
different lines of the Zhong series, meiotic pairing in the
F, hybrids was examined by different investigators (He et
al. 1988; Banks et al. 1993; Han 1994; Gao et al. 1999).
Based on these studies, the five partial amphiploids have
been classified into two types: type I includes Zhong 1 and
Zhong 2, which presumably contain one of the wheatgrass
genomes; type Il includes Zhong 3, Zhong 4 and Zhong 5,
which presumably contain another wheatgrass genome
(He et al. 1988). Nevertheless, the completeness and
identity of these added wheatgrass genomes remain
controversial topics (Banks et al. 1993; Fedak et al.
2000; Chen et al. 2003). It is accepted that the partial
amphiploids play an important role in transferring alien
genes into wheat. For example, Zhong 1 and Zhong 2
provided the first source of resistance to both wheat streak
mosaic virus and its vector, the wheat curl mite (Chen et
al. 2003). Two sets (for a total of 14) of wheat-Th.
intermedium alien addition lines have been established
using the Zhong series (He et al. 1988). Furthermore,
several translocated chromosomes derived from these
addition lines have been established and a series of high-
quality bread wheat varieties released (He et al. 1993).

For more extensive exploitation of these partial
amphiploids in wheat improvement, detailed information
on their genomic constitution is needed. In the investiga-
tion reported here, we used the combination of genomic in
situ hybridization (GISH), multicolor GISH (mcGISH)
and seed storage protein analysis to characterize the
chromosomal stability or variation and genomic constitu-
tion of the two types of partial amphiploids derived from
wheat-Th. intermedium.

Materials and methods
Plant materials

Wheat-Thinopyrum intermedium-derived partial amphi-
ploids Zhong 1 to Zhong 5 were selected from crosses
between common wheat varieties and Th. intermedium.
They were distinguished as types I and II (He et al.1988;
Banks et al. 1993) and kindly supplied by Dr. S.Y. Chi,
Heilongjiang Academy of Agricultural Sciences, Harbin,
China. The exact wheat parents that were used to establish
the partial amphiploids of Zhong 1 to Zhong 5 were
supplied by the Chinese Academy of Agricultural
Sciences, Beijing, China. All plant materials are being
maintained in our laboratory by selfing.

Genomic in situ hybridization

Seeds were germinated on moistened filter paper in petri
dishes. The actively growing roots were removed from
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seedlings and placed in ice water for 24-28 h, fixed in
Carnoy’s (3:1 ethanol-acetic acid) fixative solution for
24 h and stored in 70% (v/v) ethanol. Root tips were
stained with 1% w/v aceto-carmine for 0.5-2 h and
squashed in 45% (v/v) acetic acid. The slides were frozen
in liquid nitrogen and the cover slips removed using a
razor blade. The slides were then dehydrated in 95% (v/v)
ethanol for 5 min and stored at —20°C until used. Genomic
DNA of Th. intermedium was isolated using a modified
CTAB method (Kidwell and Osborn 1992), labeled with
biotin-16-dUTP by the random primer method and used as
a probe. Slide pre-treatment, hybridization, signal ampli-
fication and detection of the fluorescent signals were
carried out as described by Han et al. (1998a, b). Briefly,
the slides were first incubated in RNase A (100 ng/ul, in
2x SSC) for 1 h and pepsin (50 ng/pl, in 10 mM HCI) for
5-10 min, then fixed with paraformaldehyde (4%, w/v) for
10 min and dehydrated in an alcohol series (70%, 95% and
100%). The hybridization mixture was prepared to a final
concentration of 5 ng/ul biotin-labeled probe in 2x SSC,
500 ng/ul denatured salmon sperm DNA, 250-500 ng/pl
autoclaved genomic DNA from wheat cv. Chinese Spring
as a blocker, in 50% deionized formamide. The hybrid-
ization mixture was denatured and added onto the slides
and then denatured at 80°C for 6 min. After an overnight
hybridization at 37°C, post-hybridization washes were
carried out in 50% formamide in 2x SSC at 37°C for
10 min, 0.1x SSC at 37°C for 10 min and 2x SSC at 37°C
for 10 min. The slides were placed in the BSA blocking
solution (5% BSA, 100 mM Tris-HCI, 150 mM NacCl) for
5 min at 37°C. Sites of the hybridization signal for biotin-
16-dUTP were detected with avidin-FITC with two rounds
of amplification by biotinylated anti-avidin. The slides
were washed in three times in TNT (100 mM Tris-HCI,
pH 7.5; 150 mM NaCl; 0.05% Tween 20) for 10 min each
time. The chromosomes were finally counterstained with
propidium iodide (PI, 0.25-0.5 pg/ml) and the slides
mounted in the Vectashield mounting medium (Vector
Laboratories). Slides were visualized with an epifluores-
cence Zeiss Axioplan 2 microscope equipped with the
appropriate filters, and photographs were taken on Kodak
400 color slide films.

Multicolor genomic in situ hybridization

Total genomic DNA was isolated from young leaves of
Thinopyrum intermedium, Triticum urartu, Aegilops
speltoides and Ae. tauschii. Total genomic DNA of Th.
intermedium and T. urartu was labeled with digoxigenin-
11-dUTP and total genomic DNA of Ae. tauschii with
biotin-16-dUTP using the nick translation method. Total
genomic DNA of Ae. speltoides was used for blocking.
The slides were denatured at 75°C for 10 min; hybridiza-
tion and washing conditions were exactly those of the
manufacturer (Roche, Indianapolis, Ind.). Detection of the
biotinylated probe was accomplished with avidin-XRITC
and digoxigenin using a fluorescent antibody enhancer set
(Roche). The slides were mounted in the Vectashield
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mounting medium [0.5-1 pg/ml 4',6'-diamidino-2-phe-
nylindole (DAPI)] and examined under a Zeiss fluores-
cence microscope; photographs were taken on Kodak
Select film ASA 400. For GISH and mcGISH observa-
tions, at least 30 well-spread metaphase cells were
examined.

High-molecular-weight glutenin and gliadin analysis

Proteins were extracted from crushed endosperms of
single seeds. The sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) method for detection of
high-molecular-weight (HMW) subunits and non-contin-

Fig. 1a—f GISH patterns of
root-tip cells at mitotic meta-
phase (a, ¢, e) and multicolor
GISH patterns (b, d, f) of
somatic cells at metaphase. a
GISH pattern of Zhong 1. Ar-
rows indicating a pair of wheat-
Th. intermedium translocated
chromosomes. ¢ GISH pattern
of Zhong 2, showing the pre-
sence of 12 Thinopyrum inter-
medium chromosomes (vellow-
green). e GISH pattern of
Zhong 5, showing the presence
of 14 Th. intermedium chromo-
somes (vellow—green). No gross
chromosomal structural change
is detectable in these partial
amphiploids. b Multicolor GISH
pattern of Zhong 1, showing the
presence of 14 A-genome chro-
mosomes (yellow color). Arrows
denote one pair of wheat-Th.
intermedium translocation chro-
mosomes involved A genome
and Th. intermedium chromo-
some segments (vellow and
green colors, respectively),
while the asterisks refer to
another pair of Th. intermedium
chromosomes showing a pink
coloration. d Multicolor GISH
pattern of Zhong 2. The aster-
isks indicate one pair of Th.
intermedium chromosomes
(pink color). f Multicolor GISH
pattern of Zhong 4. The arrows
indicate two pairs of reciprocal
translocations involving A- and
D-genome chromosomes, while
the asterisks denote the pair of
markedly smaller chromosomes
of Th. intermedium origin

uous formic acid-PAGE methods of gliadin detection as
described by Zhang et al (1997 a, b) were used.

Results

GISH analysis of the five partial amphiploids Zhong 1
to Zhong 5

These five partial amphiploids have been grouped into two
types—type 1 (Zhong 1 and Zhong 2) and type II
(Zhong 3, Zhong 4, Zhong 5), presumably based on the
added Th. intermedium genomes (He et al. 1988; Banks et
al. 1993). Somatic chromosome counts indicated that line




Zhong 1 had a mitotic chromosome number of 2n=52.
Occasionally, plants with a chromosome number of 2n=51
were detected, but the great majority of Zhong 1 plants
were stable with a chromosome number of 27=52. When
we probed Zhong 1 with Th. intermedium genomic DNA
using Chinese Spring (genomes ABD) genomic DNA as a
block, 42 chromosomes were red and ten chromosomes
were green or yellow, indicating that Zhong 1 contained
42 wheat chromosomes and ten Th. intermedium chromo-
somes (Fig. 1a). In addition, one pair of wheat chromo-
somes showed a distinct greenish-yellow coloration at the
terminal position compared to the background PI red
coloration of the remaining 42 chromosomes (Fig. la,
arrowed), denoting that this pair of chromosomes
contained a translocated chromosome segment from 7h.
intermedium. Chromosome counts showed that the chro-
mosome number of Zhong 2 was 2rn=54 (Fig. 1¢). GISH
analysis revealed a stable chromosome number of 2n=54,
with 42 wheat chromosomes and 12 Th. intermedium
chromosomes. Multiple individuals of this amphiploid
sampled at intervals from 1996 to 2003 all showed this
identical genomic constitution (data not shown), suggest-
ing genomic stability of this amphiploid through genera-
tions.

The three type II partial amphiploids (Zhong 3,
Zhong 4, Zhong 5) all had a chromosome number of
2n=8x=56 that included 42 wheat chromosomes (red) and
14 alien chromosomes (green) (Fig. le). There were no
gross structural changes detectable at the GISH level of the
wheat genome chromosomes in the type II amphiploids,
but Zhong 4 contained one pair of Th. intermedium
chromosomes that was markedly smaller than the normal
Th. intermedium chromosomes (Fig. 1f).

mcGISH analysis of the five partial amphiploids

We further analyzed the five partial amphiploids by
mcGISH using various total genomic DNAs to determine
the genomic identity of the wheat chromosomes as well as
possible inter-genomic structural changes. Using this
technique, the A-, B- and D-genome chromosomes were
respectively revealed as having yellow, brown/gray and
red/pink fluorescence, while the alien chromosomes of 7%.
intermedium were labeled as a green fluorescence.
Apparently, Zhong 1 contained the complete set of
wheat chromosomes—namely, 14 for each of the A, B
and D genomes (Fig.1b). In addition, Zhong 1 contained
one pair of translocated chromosomes involving an A-
genome chromosome with a terminal Th. intermedium
segment on the short arm. These observations confirmed
the results of GISH analysis (Fig. 1a). A closer inspection,
however, revealed a slight difference between the GISH
and mcGISH patterns with respect to the Zhong 1
chromosome constitution: whereas the GISH patterns
indicated the existence of ten Th. intermedium chromo-
somes in Zhong 1 (Fig. 1a), the mcGISH pattern clearly
showed only eight Th. intermedium chromosomes (green)
—with the remaining two chromosomes being a pair that
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showed a pink coloration in the proximal regions and
green coloration in the terminal regions (Fig. 1b). This
result suggests that one pair of Th. intermedium chromo-
somes may be distantly homoelogous to the wheat D-
genome chromosome(s).

mcGISH showed that Zhong 2 contained the complete
42 chromosomes of wheat (14 from each of the A, B and
D genomes) and 12 Th. intermedium chromosomes
(Fig.1d). Notably, one pair of chromosomes exhibited
the faint green/pink coloration suggestive of some affinity
to the wheat D genome, similar to that shown by Zhong 1
(Fig. 1d). No gross structural changes in Zhong 2 were
detected by mcGISH (Fig. 1d).

The mcGISH results revealed that lines Zhong 3 and
Zhong 5 contained 14 A-genome chromosomes, 14 B-
genome chromosomes and 14 D-genome chromosomes
plus 14 Th. intermedium chromosomes and that there were
no gross structural changes (data not shown). Zhong 4 also
contained 14 A-genome chromosomes, 14 B-genome
chromosomes and 14 D-genome chromosomes plus 14
Th. intermedium chromosomes. It is interesting that two
pairs of reciprocal translocations involving the A- and D-
genome chromosomes occurred in Zhong 4 (Fig. 11). All
of the wheat parental cultivars involved in the production
of these partial amphiploids were checked by mcGISH,
and no structural changes in any of these wheat cultivars
were detected (data not shown).

Gliadin and HMW glutenin analysis of the five partial
amphiploids

The electrophoretic profiles of the gliadin and HMW
glutenin subunits of the five partial amphiploids, Zhong 1
to Zhong 5, were analyzed. Zhong 1 and Zhong 2 had
identical banding patterns for both gliadin and HMW
glutenin (Figs. 2, 3). One Th. intermedium-specific HMW
glutenin band that was lacking in all wheat parents was
present in Zhong 1 and Zhong 2. In addition, Zhong 1 and
Zhong 2 contained several gliadin bands that were not
present in either the wheat parents or in more than ten
random individual plants of Th. intermedium (Fig. 2,
arrowed), implying that they were the products of either
inter-genomic coordinated expression and/or physical
genomic changes. It is worth mentioning that Zhong 1
and Zhong 2 contain a 1, 7+9 and 5+10 HMW subunit
composition in the Glu-Al, Glu-B1 and Glu-D1 regions,
respectively, and, consequently, these two partial amphi-
ploids should possess excellent breadmaking qualities
according to the standard for bread-making qualities of
bread wheat (Payne et al. 1988). Zhong 3, Zhong 4 and
Zhong 5 had identical gliadin banding patterns with one
specific band from Th. intermedium (Fig. 4). These type 11
partial amphiploids also contained identical HMW glute-
nin banding patterns (data not shown).
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Fig. 2 Gliadin electrophoreto-
grams of partial amphiploids
Zhong 1, Zhong 2 and their ;‘" N 4
parents. Arrows indicate novel
bands only present in the partial
amphiploids

Fig. 3 Glutenin electrophoreto-
grams of partial amphiploids
Zhong 1, Zhong 2 and their
parents. The arrow indicates the
Th. intermedium-specific band
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Fig. 4 Gliadin electrophoretograms of partial amphiploids Zhong 3,
Zhong 4 and Zhong 5 and their parents. The arrow indicates the 7h.
intermedium-specific band

Discussion

Polyploidy is a process whereby two or more genomes are
brought together into the same nucleus, usually by
hybridization followed by chromosome doubling. Allopo-
lyploids or amphiploids usually contain two or more
complete genomes of the parental species. In this respect,
the five partial amphiploids of common wheat-Th.
intermedium analyzed in the present study are of a
different type of newly formed allopolyploids in that they
contain the complete genomes of wheat but an incomplete
genome (a set of chromosomes) of Th. intermedium. These
partial amphiploids were developed by backcrossing the
F, hybrids of wheat-Th. intermedium with wheat as the
reciprocal parent. In the many of the earlier investigations
differential partial amphiploids were characterized by
meiotic analysis of F; hybrids and by inter-crossing the
different partial amphiploids (Banks et al. 1993; Han
1994; Fedak et al. 2000).

When the five partial amphiploids (Zhong 1 to Zhong 5)
were released in the 1970s, many researchers believed that
Zhong 2 had a chromosome number of 2n=>56, with the
genomic constitution of Zhong 1 being uncertain (Han
1994). Since 1985, we have been systematically studying
the Zhong series of partial amphiploids and their
derivatives as well as maintaining the original plant
materials by strict selfing. In the present study we used
conventional GISH and multicolor GISH techniques to
definitively resolve the genomic constitutions of Zhong 1
and Zhong 2 by showing that both contain the complete
wheat A, B and D genomes but with 10 and 12 Th.
intermedium chromosomes, respectively.

It is generally believed that only euploid amphiploids
are genetically stable, while aneuploids are labile often
resulting in loss of the added alien chromosomes (Matzke
et al. 1999). Nevertheless, our results here show that some
combinations of aneuploids, such as Zhong 1 and
Zhong 2, can be remarkably stable. Zhong 1 and
Zhong 2 do not contain the 14 Th. intermedium
chromosomes necessary to classified as euploids; never-
theless, they are characterized by bivalent pairing, full
fertility and disomic inheritance (Gao et al. 1999).
Interestingly, although the partial amphiploid lines them-
selves can be fully fertile and show regular meiotic
behavior, there is a great deal of unexplained chromosome
pairing in backcrosses and inter-crosses of different partial
amphiploid lines (Fedak et al. 2000). In inter-crosses of
partial amphiploids, meiotic configurations containing
chains of up to eight chromosomes have been observed
(Fedak et al. 2000). It has been suggested that the
extensive chromosome pairing may be due to multiple
translocations and/or unpredictable behavior and dosages
of the meiotic pairing control genes (Fedak et al. 2000).

Compared to conventional GISH, mcGISH provides a
powerful technique to determine the genomic origin of
translocated chromosomes originating from intergeneric
hybridizations by identifying all three wheat genomes plus
the alien genome (Han et al. 2003). Using this technique,
we have confirmed that Zhong 1 has a pair of translocated



chromosomes between wheat and Th. intermedium, with
the chromosome segments of Th. intermedium being
translocated to the short arms of a pair of wheat A-genome
chromosomes (Fig. 1b). For the purpose of characterizing
genomic constitutions of these partial amphiploids
(Zhong 1 to Zhong 5), mcGISH apparently provides a
much more accurate and informative resolution than is
possible with the conventional GISH.

Zhong 1 and Zhong 2 were derived from the same
hybrid combination as well as the same backcrossing
pedigrees (Chi et al. 1979). Nevertheless, different types of
structural genomic changes have occurred in these two
partial amphiploids. Since their production, apparent inter-
chromosomal exchanges (translocations) have occurred in
Zhong 1 (Fig.la), whereas only the loss of a pair of T%.
intermedium chromosomes has occurred in Zhong 2
(Fig.1c). Similarly, Zhong 3, Zhong 4 and Zhong 5 were
also derived from the same pedigree, but only Zhong 4
exhibits genomic changes at the chromosomal Ilevel
(Fig. 1f). These observations suggest that the wheat
homoeologous pairing control genes, such as phl (Riley
1960; Sears 1976), were differentially suppressed by the
presence of different Th. intermedium chromosome(s)
(reviewed in Dvorak and Dubcovsky 1995 and references
therein). Consequently, limited homoeologous chromo-
somal recombination between the wheat chromosomes
and those of Th. intermedim has occurred in some cases
but not in others (Fedak et al. 2000). Alternatively, the
genomic changes may have resulted from some non-
Mendelian mechanisms like the ones proposed recently by
Feldman and colleagues (Feldman et al. 1997; Levy and
Feldman 2002; Liu and Wendel 2002; Feldman and Levy
2003). If the later is the underlying cause, then the
genomic changes in the partial amphiploids are likely
stochastic in nature or that some unidentified genomic loci
responsible for genomic stability from Th. intermedium are
differentially present in the partial amphiploids even
though they share the same pedigrees. It should be
noted, however, that the absence of chromosomal changes
does not rule out cryptic inter-genomic introgression and
genomic changes at the DNA sequence level. Indeed,
genomic changes have been detected in Zhong 3 and
Zhong 5 by means of restriction fragment length poly-
morphism analysis (Liu et al. 1999)

Apart from genomic changes, another important aspect
of rapid adjustment to duplicated genome dosage is
through modifications to gene expression. In wheat, inter-
genomic suppression, as seen by the disappearance of
storage protein subunits, was observed immediately upon
the formation of a wheat allohexaploid: when the D
genome was removed from hexaploid wheat, the resulting
tetraploid regained the disease resistance and breadmaking
quality traits (Galili and Feldman 1984). In a newly
synthesized wheat allotetraploid, Kashkush et al. (2002)
found that transcript disappearance was caused either by
gene loss or gene silencing. In addition, the activation of
new transcripts, all of which being related to retro-
transposons, was also found in some new amphiploids
(Kashkush et al. 2003). Therefore, intergeneric crosses in
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wheat do not ensure complete parental-like, additive gene
expression in the progeny. This is clearly illustrated in the
gliadin and HMW glutenin patterns of Zhong 1 and
Zhong 2, where both the loss of wheat parental bands and
the appearance of novel bands were observed (Fig. 2).
Incidentally, Zhong 1 and Zhong 2 have been found to
have very good breadmaking characteristics, and their use
as a parent has resulted in the release of several new wheat
cultivars with excellent breadmaking qualities (He et al.
1993). It is presently unclear whether this quality trait is
associated with the novel expression patterns of gliadin
and HMW glutenin mentioned above. Several recent
studies have shown that allopolyploidy accelerates ge-
nome evolution in wheat in two ways (reviewed in
Feldman and Levy 2003 and references therein): (1)
allopolyploidization triggers rapid genome changes (re-
volutionary changes) through the instantaneous generation
of a variety of cardinal genetic and epigenetic alterations;
(2) the allopolyploid state facilitates genomic changes
during the life of the species (evolutionary changes) that
are not attainable at the diploid level. Thus, the
evolutionary changes comprise structural and functional
changes. The results of the present study appear to lend
support to this allopolyploidy paradigm because structural
changes, such as inter-genomic transfer of chromosomal
segments, have apparently occurred in one of the partial
amphiploids, Zhong 4, that involved the wheat A- and D-
genome chromosomes (Fig. 1f). In addition, Zhong 4 also
contained a pair of cytologically discernible, markedly
smaller chromosomes of Th. intermedium origin (Fig. 1f),
thus further suggesting genomic instability of this nascent
partial amphiploid.
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